
4 | THE PERCEPTRON

Dependencies: Chapter 1, Chapter 3

So far, you’ve seen two types of learning models: in decision
trees, only a small number of features are used to make decisions; in
nearest neighbor algorithms, all features are used equally. Neither of
these extremes is always desirable. In some problems, we might want
to use most of the features, but use some more than others.

In this chapter, we’ll discuss the perceptron algorithm for learn-
ing weights for features. As we’ll see, learning weights for features
amounts to learning a hyperplane classifier: that is, basically a di-
vision of space into two halves by a straight line, where one half is
“positive” and one half is “negative.” In this sense, the perceptron
can be seen as explicitly finding a good linear decision boundary.

4.1 Bio-inspired Learning

Figure 4.1: a picture of a neuron

Folk biology tells us that our brains are made up of a bunch of little
units, called neurons, that send electrical signals to one another. The
rate of firing tells us how “activated” a neuron is. A single neuron,
like that shown in Figure 4.1 might have three incoming neurons.
These incoming neurons are firing at different rates (i.e., have dif-
ferent activations). Based on how much these incoming neurons are
firing, and how “strong” the neural connections are, our main neu-
ron will “decide” how strongly it wants to fire. And so on through
the whole brain. Learning in the brain happens by neurons becom-
ming connected to other neurons, and the strengths of connections
adapting over time.

Figure 4.2: figure showing feature
vector and weight vector and products
and sum

The real biological world is much more complicated than this.
However, our goal isn’t to build a brain, but to simply be inspired
by how they work. We are going to think of our learning algorithm
as a single neuron. It receives input from D-many other neurons,
one for each input feature. The strength of these inputs are the fea-
ture values. This is shown schematically in Figure 4.1. Each incom-
ing connection has a weight and the neuron simply sums up all the
weighted inputs. Based on this sum, it decides whether to “fire” or

Learning Objectives:
• Describe the biological motivation

behind the perceptron.

• Classify learning algorithms based
on whether they are error-driven or
not.

• Implement the perceptron algorithm
for binary classification.

• Draw perceptron weight vectors
and the corresponding decision
boundaries in two dimensions.

• Contrast the decision boundaries
of decision trees, nearest neighbor
algorithms and perceptrons.

• Compute the margin of a given
weight vector on a given data set.

Algebra is nothing more than geometry, in words; geometry is
nothing more than algebra, in pictures. – Sophie Germain

42 a course in machine learning

not. Firing is interpreted as being a positive example and not firing is
interpreted as being a negative example. In particular, if the weighted
sum is positive, it “fires” and otherwise it doesn’t fire. This is shown
diagramatically in Figure 4.2.

Mathematically, an input vector x = 〈x1, x2, . . . , xD〉 arrives. The
neuron stores D-many weights, w1, w2, . . . , wD. The neuron computes
the sum:

a =
D

∑
d=1

wdxd (4.1)

to determine it’s amount of “activation.” If this activiation is posi-
tive (i.e., a > 0) it predicts that this example is a positive example.
Otherwise it predicts a negative example.

The weights of this neuron are fairly easy to interpret. Suppose
that a feature, for instance “is this a System’s class?” gets a zero
weight. Then the activation is the same regardless of the value of
this feature. So features with zero weight are ignored. Features with
positive weights are indicative of positive examples because they
cause the activation to increase. Features with negative weights are
indicative of negative examples because they cause the activiation to
decrease. What would happen if we encoded

binary features like “is this a Sys-
tem’s class” as no=0 and yes=−1
(rather than the standard no=0 and
yes=+1)?

?
It is often convenient to have a non-zero threshold. In other

words, we might want to predict positive if a > θ for some value
θ. The way that is most convenient to achieve this is to introduce a
bias term into the neuron, so that the activation is always increased
by some fixed value b. Thus, we compute:

a =

[
D

∑
d=1

wdxd

]
+ b (4.2)

If you wanted the activation thresh-
old to be a > θ instead of a > 0,
what value would b have to be?

?This is the complete neural model of learning. The model is pa-
rameterized by D-many weights, w1, w2, . . . , wD, and a single scalar
bias value b.

4.2 Error-Driven Updating: The Perceptron Algorithm

The perceptron is a classic learning algorithm for the neural model
of learning. Like K-nearest neighbors, it is one of those frustrating
algorithms that is incredibly simple and yet works amazingly well,
for some types of problems.

The algorithm is actually quite different than either the decision
tree algorithm or the KNN algorithm. First, it is online. This means
that instead of considering the entire data set at the same time, it only
ever looks at one example. It processes that example and then goes

the perceptron 43

Algorithm 5 PerceptronTrain(D, MaxIter)
1: wd ← 0, for all d = 1 . . . D // initialize weights
2: b ← 0 // initialize bias
3: for iter = 1 . . . MaxIter do
4: for all (x,y) ∈ D do
5: a ← ∑D

d=1 wd xd + b // compute activation for this example
6: if ya ≤ 0 then
7: wd ← wd + yxd, for all d = 1 . . . D // update weights
8: b ← b + y // update bias
9: end if

10: end for
11: end for
12: return w0, w1, . . . , wD, b

Algorithm 6 PerceptronTest(w0, w1, . . . , wD, b, x̂)
1: a ← ∑D

d=1 wd x̂d + b // compute activation for the test example
2: return sign(a)

on to the next one. Second, it is error driven. This means that, so
long as it is doing well, it doesn’t bother updating its parameters.

The algorithm maintains a “guess” at good parameters (weights
and bias) as it runs. It processes one example at a time. For a given
example, it makes a prediction. It checks to see if this prediction
is correct (recall that this is training data, so we have access to true
labels). If the prediction is correct, it does nothing. Only when the
prediction is incorrect does it change its parameters, and it changes
them in such a way that it would do better on this example next
time around. It then goes on to the next example. Once it hits the
last example in the training set, it loops back around for a specified
number of iterations.

The training algorithm for the perceptron is shown in Algo-
rithm 4.2 and the corresponding prediction algorithm is shown in
Algorithm 4.2. There is one “trick” in the training algorithm, which
probably seems silly, but will be useful later. It is in line 6, when we
check to see if we want to make an update or not. We want to make
an update if the current prediction (just sign(a)) is incorrect. The
trick is to multiply the true label y by the activation a and compare
this against zero. Since the label y is either +1 or −1, you just need
to realize that ya is positive whenever a and y have the same sign.
In other words, the product ya is positive if the current prediction is
correct. It is very very important to check

ya ≤ 0 rather than ya < 0. Why??The particular form of update for the perceptron is quite simple.
The weight wd is increased by yxd and the bias is increased by y. The
goal of the update is to adjust the parameters so that they are “bet-
ter” for the current example. In other words, if we saw this example

44 a course in machine learning

twice in a row, we should do a better job the second time around.
To see why this particular update achieves this, consider the fol-

lowing scenario. We have some current set of parameters w1, . . . , wD, b.
We observe an example (x, y). For simplicity, suppose this is a posi-
tive example, so y = +1. We compute an activation a, and make an
error. Namely, a < 0. We now update our weights and bias. Let’s call
the new weights w′1, . . . , w′D, b′. Suppose we observe the same exam-
ple again and need to compute a new activation a′. We proceed by a
little algebra:

a′ =
D

∑
d=1

w′dxd + b′ (4.3)

=
D

∑
d=1

(wd + xd)xd + (b + 1) (4.4)

=
D

∑
d=1

wdxd + b +
D

∑
d=1

xdxd + 1 (4.5)

= a +
D

∑
d=1

x2
d + 1 > a (4.6)

So the difference between the old activation a and the new activa-
tion a′ is ∑d x2

d + 1. But x2
d ≥ 0, since it’s squared. So this value is

always at least one. Thus, the new activation is always at least the old
activation plus one. Since this was a positive example, we have suc-
cessfully moved the activation in the proper direction. (Though note
that there’s no guarantee that we will correctly classify this point the
second, third or even fourth time around!) This analysis hold for the case pos-

itive examples (y = +1). It should
also hold for negative examples.
Work it out.

?

Figure 4.3: training and test error via
early stopping

The only hyperparameter of the perceptron algorithm is MaxIter,
the number of passes to make over the training data. If we make
many many passes over the training data, then the algorithm is likely
to overfit. (This would be like studying too long for an exam and just
confusing yourself.) On the other hand, going over the data only
one time might lead to underfitting. This is shown experimentally in
Figure 4.3. The x-axis shows the number of passes over the data and
the y-axis shows the training error and the test error. As you can see,
there is a “sweet spot” at which test performance begins to degrade
due to overfitting.

One aspect of the perceptron algorithm that is left underspecified
is line 4, which says: loop over all the training examples. The natural
implementation of this would be to loop over them in a constant
order. The is actually a bad idea.

Consider what the perceptron algorithm would do on a data set
that consisted of 500 positive examples followed by 500 negative
examples. After seeing the first few positive examples (maybe five),
it would likely decide that every example is positive, and would stop

the perceptron 45

learning anything. It would do well for a while (next 495 examples),
until it hit the batch of negative examples. Then it would take a while
(maybe ten examples) before it would start predicting everything as
negative. By the end of one pass through the data, it would really
only have learned from a handful of examples (fifteen in this case).

Figure 4.4: training and test error for
permuting versus not-permuting

So one thing you need to avoid is presenting the examples in some
fixed order. This can easily be accomplished by permuting the order
of examples once in the beginning and then cycling over the data set
in the same (permuted) order each iteration. However, it turns out
that you can actually do better if you re-permute the examples in each
iteration. Figure 4.4 shows the effect of re-permuting on convergence
speed. In practice, permuting each iteration tends to yield about 20%
savings in number of iterations. In theory, you can actually prove that
it’s expected to be about twice as fast. If permuting the data each iteration

saves somewhere between 20% and
50% of your time, are there any
cases in which you might not want
to permute the data every iteration?

?4.3 Geometric Intrepretation

A question you should be asking yourself by now is: what does the
decision boundary of a perceptron look like? You can actually answer
that question mathematically. For a perceptron, the decision bound-
ary is precisely where the sign of the activation, a, changes from −1
to +1. In other words, it is the set of points x that achieve zero ac-
tivation. The points that are not clearly positive nor negative. For
simplicity, we’ll first consider the case where there is no “bias” term
(or, equivalently, the bias is zero). Formally, the decision boundary B
is:

B =

{
x : ∑

d
wdxd = 0

}
(4.7)

We can now apply some linear algebra. Recall that ∑d wdxd is just
the dot product between the vector w = 〈w1, w2, . . . , wD〉 and the
vector x. We will write this as w · x. Two vectors have a zero dot
product if and only if they are perpendicular. Thus, if we think of
the weights as a vector w, then the decision boundary is simply the
plane perpendicular to w.

46 a course in machine learning

u

v }a} b

Given two vectors u and v their dot product u · v is ∑d udvd. The dot product
grows large and positive when u and v point in same direction, grows large
and negative when u and v point in opposite directions, and is zero when
their are perpendicular. A useful geometric interpretation of dot products is
projection. Suppose ||u|| = 1, so that u is a unit vector. We can think of any
other vector v as consisting of two components: (a) a component in the di-
rection of u and (b) a component that’s perpendicular to u. This is depicted
geometrically to the right: Here, u = 〈0.8, 0.6〉 and v = 〈0.37, 0.73〉. We
can think of v as the sum of two vectors, a and b, where a is parallel to u and b is perpendicular. The
length of b is exactly u · v = 0.734, which is why you can think of dot products as projections: the dot
product between u and v is the “projection of v onto u.”

MATH REVIEW | DOT PRODUCTS

Figure 4.5:

Figure 4.6: picture of data points with
hyperplane and weight vector

This is shown pictorially in Figure 4.6. Here, the weight vector is
shown, together with it’s perpendicular plane. This plane forms the
decision boundary between positive points and negative points. The
vector points in the direction of the positive examples and away from
the negative examples.

One thing to notice is that the scale of the weight vector is irrele-
vant from the perspective of classification. Suppose you take a weight
vector w and replace it with 2w. All activations are now doubled.
But their sign does not change. This makes complete sense geometri-
cally, since all that matters is which side of the plane a test point falls
on, now how far it is from that plane. For this reason, it is common
to work with normalized weight vectors, w, that have length one; i.e.,
||w|| = 1. If I give you a non-zero weight vec-

tor w, how do I compute a weight
vector w′ that points in the same
direction but has a norm of one?

?

Figure 4.7: The same picture as before,
but with projections onto weight vector;
then, below, those points along a one-
dimensional axis with zero marked.

The geometric intuition can help us even more when we realize
that dot products compute projections. That is, the value w · x is
just the distance of x from the origin when projected onto the vector
w. This is shown in Figure 4.7. In that figure, all the data points are
projected onto w. Below, we can think of this as a one-dimensional
version of the data, where each data point is placed according to its
projection along w. This distance along w is exactly the activiation of
that example, with no bias.

From here, you can start thinking about the role of the bias term.
Previously, the threshold would be at zero. Any example with a
negative projection onto w would be classified negative; any exam-
ple with a positive projection, positive. The bias simply moves this
threshold. Now, after the projection is computed, b is added to get
the overall activation. The projection plus b is then compared against

the perceptron 47

zero.

Figure 4.8: perc:bias: perceptron
picture with bias

Thus, from a geometric perspective, the role of the bias is to shift
the decision boundary away from the origin, in the direction of w. It
is shifted exactly −b units. So if b is positive, the boundary is shifted
away from w and if b is negative, the boundary is shifted toward w.
This is shown in Figure 4.8. This makes intuitive sense: a positive
bias means that more examples should be classified positive. By
moving the decision boundary in the negative direction, more space
yields a positive classification.

The decision boundary for a perceptron is a very magical thing. In
D dimensional space, it is always a D − 1-dimensional hyperplane.
(In two dimensions, a 1-d hyperplane is simply a line. In three di-
mensions, a 2-d hyperplane is like a sheet of paper.) This hyperplane
divides space in half. In the rest of this book, we’ll refer to the weight
vector, and to hyperplane it defines, interchangeably.

Figure 4.9: perceptron picture with
update, no bias

The perceptron update can also be considered geometrically. (For
simplicity, we will consider the unbiased case.) Consider the sit-
uation in Figure 4.9. Here, we have a current guess as to the hy-
perplane, and positive training example comes in that is currently
mis-classified. The weights are updated: w← w + yx. This yields the
new weight vector, also shown in the Figure. In this case, the weight
vector changed enough that this training example is now correctly
classified.

4.4 Interpreting Perceptron Weights

You may find yourself having run the perceptron, learned a really
awesome classifier, and then wondering “what the heck is this clas-
sifier doing?” You might ask this question because you’re curious to
learn something about the underlying data. You might ask this ques-
tion because you want to make sure that the perceptron is learning
“the right thing.” You might ask this question because you want to
remove a bunch of features that aren’t very useful because they’re
expensive to compute or take a lot of storage.

The perceptron learns a classifier of the form x 7→ sign (∑d wdxd + b).
A reasonable question to ask is: how sensitive is the final classifica-
tion to small changes in some particular feature. We can answer this
question by taking a derivative. If we arbitrarily take the 7th fea-
ture we can compute ∂

∂x7
(∑d wdxd + b) = w7. This says: the rate at

which the activation changes as a function of the 7th feature is ex-
actly w7. This gives rise to a useful heuristic for interpreting percep-
tron weights: sort all the weights from largest (positive) to largest
(negative), and take the top ten and bottom ten. The top ten are the
features that the perceptron is most sensitive to for making positive

48 a course in machine learning

predictions. The bottom ten are the features that the perceptron is
most sensitive to for making negative predictions.

This heuristic is useful, especially when the inputs x consist en-
tirely of binary values (like a bag of words representation). The
heuristic is less useful when the range of the individual features
varies significantly. The issue is that if you have one feat x5 that’s ei-
ther 0 or 1, and another feature x7 that’s either 0 or 100, but w5 = w7,
it’s reasonable to say that w7 is more important because it is likely to
have a much larger influence on the final prediction. The easiest way
to compensate for this is simply to scale your features ahead of time:
this is another reason why feature scaling is a useful preprocessing
step.

4.5 Perceptron Convergence and Linear Separability

You already have an intuitive feeling for why the perceptron works:
it moves the decision boundary in the direction of the training exam-
ples. A question you should be asking yourself is: does the percep-
tron converge? If so, what does it converge to? And how long does it
take?

It is easy to construct data sets on which the perceptron algorithm
will never converge. In fact, consider the (very uninteresting) learn-
ing problem with no features. You have a data set consisting of one
positive example and one negative example. Since there are no fea-
tures, the only thing the perceptron algorithm will ever do is adjust
the bias. Given this data, you can run the perceptron for a bajillion
iterations and it will never settle down. As long as the bias is non-
negative, the negative example will cause it to decrease. As long as
it is non-positive, the positive example will cause it to increase. Ad
infinitum. (Yes, this is a very contrived example.)

Figure 4.10: separable data

What does it mean for the perceptron to converge? It means that
it can make an entire pass through the training data without making
any more updates. In other words, it has correctly classified every
training example. Geometrically, this means that it was found some
hyperplane that correctly segregates the data into positive and nega-
tive examples, like that shown in Figure 4.10.

Figure 4.11: inseparable data

In this case, this data is linearly separable. This means that there
exists some hyperplane that puts all the positive examples on one side
and all the negative examples on the other side. If the training is not
linearly separable, like that shown in Figure 4.11, then the perceptron
has no hope of converging. It could never possibly classify each point
correctly.

The somewhat surprising thing about the perceptron algorithm is
that if the data is linearly separable, then it will converge to a weight

the perceptron 49

vector that separates the data. (And if the data is inseparable, then it
will never converge.) This is great news. It means that the perceptron
converges whenever it is even remotely possible to converge.

The second question is: how long does it take to converge? By
“how long,” what we really mean is “how many updates?” As is the
case for much learning theory, you will not be able to get an answer
of the form “it will converge after 5293 updates.” This is asking too
much. The sort of answer we can hope to get is of the form “it will
converge after at most 5293 updates.”

What you might expect to see is that the perceptron will con-
verge more quickly for easy learning problems than for hard learning
problems. This certainly fits intuition. The question is how to define
“easy” and “hard” in a meaningful way. One way to make this def-
inition is through the notion of margin. If I give you a data set and
hyperplane that separates itthen the margin is the distance between
the hyperplane and the nearest point. Intuitively, problems with large
margins should be easy (there’s lots of “wiggle room” to find a sepa-
rating hyperplane); and problems with small margins should be hard
(you really have to get a very specific well tuned weight vector).

Formally, given a data set D, a weight vector w and bias b, the
margin of w, b on D is defined as:

margin(D, w, b) =

{
min(x,y)∈D y

(
w · x + b

)
if w separates D

−∞ otherwise
(4.8)

In words, the margin is only defined if w, b actually separate the data
(otherwise it is just −∞). In the case that it separates the data, we
find the point with the minimum activation, after the activation is
multiplied by the label. So long as the margin is not −∞,

it is always positive. Geometrically
this makes sense, but why does
Eq (4.8) yield this?

?For some historical reason (that is unknown to the author), mar-
gins are always denoted by the Greek letter γ (gamma). One often
talks about the margin of a data set. The margin of a data set is the
largest attainable margin on this data. Formally:

margin(D) = sup
w,b

margin(D, w, b) (4.9)

In words, to compute the margin of a data set, you “try” every possi-
ble w, b pair. For each pair, you compute its margin. We then take the
largest of these as the overall margin of the data.1 If the data is not 1 You can read “sup” as “max” if you

like: the only difference is a technical
difference in how the −∞ case is
handled.

linearly separable, then the value of the sup, and therefore the value
of the margin, is −∞.

There is a famous theorem due to Rosenblatt2 that shows that the 2 Rosenblatt 1958

number of errors that the perceptron algorithm makes is bounded by
γ−2. More formally:

50 a course in machine learning

Theorem 2 (Perceptron Convergence Theorem). Suppose the perceptron
algorithm is run on a linearly separable data set D with margin γ > 0.
Assume that ||x|| ≤ 1 for all x ∈ D. Then the algorithm will converge after
at most 1

γ2 updates.

The proof of this theorem is elementary, in the sense that it does
not use any fancy tricks: it’s all just algebra. The idea behind the
proof is as follows. If the data is linearly separable with margin γ,
then there exists some weight vector w∗ that achieves this margin.
Obviously we don’t know what w∗ is, but we know it exists. The
perceptron algorithm is trying to find a weight vector w that points
roughly in the same direction as w∗. (For large γ, “roughly” can be
very rough. For small γ, “roughly” is quite precise.) Every time the
perceptron makes an update, the angle between w and w∗ changes.
What we prove is that the angle actually decreases. We show this in
two steps. First, the dot product w ·w∗ increases a lot. Second, the
norm ||w|| does not increase very much. Since the dot product is
increasing, but w isn’t getting too long, the angle between them has
to be shrinking. The rest is algebra.

Proof of Theorem 2. The margin γ > 0 must be realized by some set
of parameters, say x∗. Suppose we train a perceptron on this data.
Denote by w(0) the initial weight vector, w(1) the weight vector after
the first update, and w(k) the weight vector after the kth update. (We
are essentially ignoring data points on which the perceptron doesn’t
update itself.) First, we will show that w∗ · w(k) grows quicky as
a function of k. Second, we will show that

∣∣∣∣w(k)
∣∣∣∣ does not grow

quickly.
First, suppose that the kth update happens on example (x, y). We

are trying to show that w(k) is becoming aligned with w∗. Because we
updated, know that this example was misclassified: yw(k-1) · x < 0.
After the update, we get w(k) = w(k-1) + yx. We do a little computa-
tion:

w∗ ·w(k) = w∗ ·
(

w(k-1) + yx
)

definition of w(k) (4.10)

= w∗ ·w(k-1) + yw∗ · x vector algebra (4.11)

≥ w∗ ·w(k-1) + γ w∗ has margin γ (4.12)

Thus, every time w(k) is updated, its projection onto w∗ increases by
at least γ. Therefore: w∗ ·w(k) ≥ kγ.

Next, we need to show that the increase of γ along w∗ occurs
because w(k) is getting closer to w∗, not just because it’s getting ex-
ceptionally long. To do this, we compute the norm of w(k):∣∣∣∣∣∣w(k)

∣∣∣∣∣∣2

the perceptron 51

=
∣∣∣∣∣∣w(k-1) + yx

∣∣∣∣∣∣2 def. of w(k) (4.13)

=
∣∣∣∣∣∣w(k-1)

∣∣∣∣∣∣2 + y2 ||x||2 + 2yw(k-1) · x quadratic rule (4.14)

≤
∣∣∣∣∣∣w(k-1)

∣∣∣∣∣∣2 + 1 + 0 assumption and a < 0 (4.15)

Thus, the squared norm of w(k) increases by at most one every up-
date. Therefore:

∣∣∣∣w(k)
∣∣∣∣2 ≤ k.

Now we put together the two things we have learned before. By
our first conclusion, we know w∗ ·w(k) ≥ kγ. But our second con-
clusion,

√
k ≥

∣∣∣∣w(k)
∣∣∣∣2. Finally, because w∗ is a unit vector, we know

that
∣∣∣∣w(k)

∣∣∣∣ ≥ w∗ ·w(k). Putting this together, we have:

√
k ≥

∣∣∣∣∣∣w(k)
∣∣∣∣∣∣ ≥ w∗ ·w(k) ≥ kγ (4.16)

Taking the left-most and right-most terms, we get that
√

k ≥ kγ.
Dividing both sides by k, we get 1√

k
≥ γ and therefore k ≤ 1

γ2 .

This means that once we’ve made 1
γ2 updates, we cannot make any

more!

Perhaps we don’t want to assume
that all x have norm at most 1. If
they have all have norm at most
R, you can achieve a very simi-
lar bound. Modify the perceptron
convergence proof to handle this
case.

?

It is important to keep in mind what this proof shows and what
it does not show. It shows that if I give the perceptron data that
is linearly separable with margin γ > 0, then the perceptron will
converge to a solution that separates the data. And it will converge
quickly when γ is large. It does not say anything about the solution,
other than the fact that it separates the data. In particular, the proof
makes use of the maximum margin separator. But the perceptron
is not guaranteed to find this maximum margin separator. The data
may be separable with margin 0.9 and the perceptron might still
find a separating hyperplane with a margin of only 0.000001. Later
(in Chapter 8), we will see algorithms that explicitly try to find the
maximum margin solution. Why does the perceptron conver-

gence bound not contradict the
earlier claim that poorly ordered
data points (e.g., all positives fol-
lowed by all negatives) will cause
the perceptron to take an astronom-
ically long time to learn?

?4.6 Improved Generalization: Voting and Averaging

In the beginning of this chapter, there was a comment that the per-
ceptron works amazingly well. This was a half-truth. The “vanilla”
perceptron algorithm does well, but not amazingly well. In order to
make it more competitive with other learning algorithms, you need
to modify it a bit to get better generalization. The key issue with the
vanilla perceptron is that it counts later points more than it counts earlier
points.

To see why, consider a data set with 10, 000 examples. Suppose
that after the first 100 examples, the perceptron has learned a really

52 a course in machine learning

good classifier. It’s so good that it goes over the next 9899 exam-
ples without making any updates. It reaches the 10, 000th example
and makes an error. It updates. For all we know, the update on this
10, 000th example completely ruins the weight vector that has done so
well on 99.99% of the data!

What we would like is for weight vectors that “survive” a long
time to get more say than weight vectors that are overthrown quickly.
One way to achieve this is by voting. As the perceptron learns, it
remembers how long each hyperplane survives. At test time, each
hyperplane encountered during training “votes” on the class of a test
example. If a particular hyperplane survived for 20 examples, then
it gets a vote of 20. If it only survived for one example, it only gets a
vote of 1. In particular, let (w, b)(1), . . . , (w, b)(K) be the K + 1 weight
vectors encountered during training, and c(1), . . . , c(K) be the survival
times for each of these weight vectors. (A weight vector that gets
immediately updated gets c = 1; one that survives another round
gets c = 2 and so on.) Then the prediction on a test point is:

ŷ = sign

(
K

∑
k=1

c(k)sign
(

w(k) · x̂ + b(k)
))

(4.17)

This algorithm, known as the voted perceptron works quite well in
practice, and there is some nice theory showing that it is guaranteed
to generalize better than the vanilla perceptron. Unfortunately, it is
also completely impractical. If there are 1000 updates made during
perceptron learning, the voted perceptron requires that you store
1000 weight vectors, together with their counts. This requires an
absurd amount of storage, and makes prediction 1000 times slower
than the vanilla perceptron. The training algorithm for the voted

perceptron is the same as the
vanilla perceptron. In particular,
in line 5 of Algorithm 4.2, the ac-
tivation on a training example is
computed based on the current
weight vector, not based on the voted
prediction. Why?

?

A much more practical alternative is the averaged perceptron.
The idea is similar: you maintain a collection of weight vectors and
survival times. However, at test time, you predict according to the
average weight vector, rather than the voting. In particular, the predic-
tion is:

ŷ = sign

(
K

∑
k=1

c(k)
(

w(k) · x̂ + b(k)
))

(4.18)

The only difference between the voted prediction, Eq (4.17), and the
averaged prediction, Eq (4.18), is the presense of the interior sign
operator. With a little bit of algebra, we can rewrite the test-time
prediction as:

ŷ = sign

((
K

∑
k=1

c(k)w(k)

)
· x̂ +

K

∑
k=1

c(k)b(k)

)
(4.19)

The advantage of the averaged perceptron is that we can simply
maintain a running sum of the averaged weight vector (the blue term)

the perceptron 53

Algorithm 7 AveragedPerceptronTrain(D, MaxIter)
1: w ← 〈0, 0, . . . 0〉 , b ← 0 // initialize weights and bias
2: u ← 〈0, 0, . . . 0〉 , β ← 0 // initialize cached weights and bias
3: c← 1 // initialize example counter to one
4: for iter = 1 . . . MaxIter do
5: for all (x,y) ∈ D do
6: if y(w · x + b) ≤ 0 then
7: w ← w + y x // update weights
8: b ← b + y // update bias
9: u ← u + y c x // update cached weights

10: β ← β + y c // update cached bias
11: end if
12: c← c + 1 // increment counter regardless of update
13: end for
14: end for
15: return w - 1

c u, b - 1
c β // return averaged weights and bias

and averaged bias (the red term). Test-time prediction is then just as
efficient as it is with the vanilla perceptron.

The full training algorithm for the averaged perceptron is shown
in Algorithm 4.6. Some of the notation is changed from the original
perceptron: namely, vector operations are written as vector opera-
tions, and the activation computation is folded into the error check-
ing.

It is probably not immediately apparent from Algorithm 4.6 that
the computation unfolding is precisely the calculation of the averaged
weights and bias. The most natural implementation would be to keep
track of an averaged weight vector u. At the end of every example,
you would increase u ← u + w (and similarly for the bias). However,
such an implementation would require that you updated the aver-
aged vector on every example, rather than just on the examples that
were incorrectly classified! Since we hope that eventually the per-
ceptron learns to do a good job, we would hope that it will not make
updates on every example. So, ideally, you would like to only update
the averaged weight vector when the actual weight vector changes.
The slightly clever computation in Algorithm 4.6 achieves this. By writing out the computation of

the averaged weights from Eq (4.18)
as a telescoping sum, derive the
computation from Algorithm 4.6.

?The averaged perceptron is almost always better than the percep-
tron, in the sense that it generalizes better to test data. However, that
does not free you from having to do early stopping. It will, eventu-
ally, overfit.

4.7 Limitations of the Perceptron

Although the perceptron is very useful, it is fundamentally limited in
a way that neither decision trees nor KNN are. Its limitation is that

54 a course in machine learning

its decision boundaries can only be linear. The classic way of showing
this limitation is through the XOR problem (XOR = exclusive or). The
XOR problem is shown graphically in Figure 4.12. It consists of four
data points, each at a corner of the unit square. The labels for these
points are the same, along the diagonals. You can try, but you will
not be able to find a linear decision boundary that perfectly separates
these data points.

Figure 4.12: picture of xor problem

One question you might ask is: do XOR-like problems exist in
the real world? Unfortunately for the perceptron, the answer is yes.
Consider a sentiment classification problem that has three features
that simply say whether a given word is contained in a review of
a course. These features are: excellent, terrible and not. The
excellent feature is indicative of positive reviews and the terrible

feature is indicative of negative reviews. But in the presence of the
not feature, this categorization flips.

One way to address this problem is by adding feature combina-
tions. We could add two additional features: excellent-and-not

and terrible-and-not that indicate a conjunction of these base
features. By assigning weights as follows, you can achieve the desired
effect:

wexecellent = +1 wterrible = −1 wnot = 0

wexecllent-and-not = −2 wterrible-and-not = +2

In this particular case, we have addressed the problem. However, if
we start with D-many features, if we want to add all pairs, we’ll blow
up to (D

2) = O(D2) features through this feature mapping. And
there’s no guarantee that pairs of features is enough. We might need
triples of features, and now we’re up to (D

3) = O(D2) features. These
additional features will drastically increase computation and will
often result in a stronger propensity to overfitting. Suppose that you took the XOR

problem and added one new fea-
ture: x3 = x1 ∧ x2 (the logical and
of the two existing features). Write
out feature weights and a bias that
would achieve perfect classification
on this data.

?

In fact, the “XOR problem” is so significant that it basically killed
research in classifiers with linear decision boundaries for a decade
or two. Later in this book, we will see two alternative approaches to
taking key ideas from the perceptron and generating classifiers with
non-linear decision boundaries. One approach is to combine multi-
ple perceptrons in a single framework: this is the neural networks
approach (see Chapter 10). The second approach is to find computa-
tionally efficient ways of doing feature mapping in a computationally
and statistically efficient way: this is the kernels approach (see Chap-
ter 11).

4.8 Further Reading

TODO further reading

	The Perceptron
	Bio-inspired Learning
	Error-Driven Updating: The Perceptron Algorithm
	Geometric Intrepretation
	Interpreting Perceptron Weights
	Perceptron Convergence and Linear Separability
	Improved Generalization: Voting and Averaging
	Limitations of the Perceptron
	Further Reading

